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Abstract—Modern software applications are complex, and
their maintenance implies elaborate analysis tools that reveal
their structure and functionality, for purposes like software un-
derstanding or quality assessment. This paper introduces ViMC, a
tool we have developed to support software engineers in analyzing
the structure of object-oriented software applications, by focusing
on measuring the various aspects that define the properties of
the entities within a software project. The tool provides a set of
predefined software metrics that can be applied to sets of classes
and packages within a given software application, while allowing
the user to dynamically create new metrics, as needed. The
definition of custom metrics is done either through programming,
or by interactively combining existing metrics via a user interface.

Index Terms—software engineering, software metrics, reverse
engineering, software understanding

I. INTRODUCTION

Software applications are nowadays very complex systems,
developed using different types of technologies, based on
various frameworks, and consisting of large amounts of code
and data artifacts. They are usually built by large teams, over
significant periods of time, and their maintenance requirements
are vital for their success.

Among the main challenges in the software engineering
field there is the task of managing this complexity, by enabling
the engineers to easily understand the systems as they evolve,
even when they were built by other parties or when new teams
need to take over the development. Another essential concern
is assessing the structural properties of software systems in
order to evaluate their design and implementation quality,
to capture design flaws or to plan changes. For these pur-
poses, software engineers employ specialized methodologies
supported by specific tools that help them analyze the systems,
extract the relevant information, and provide the knowledge
items needed to understand them.

One of the most widely used approach is reverse en-
gineering the software system [1] which basically consists
of identifying the system components and their relation to
each other, then representing the system at a higher level
of abstraction fit for capturing the aspects required by the
engineer’s purpose. Many methodologies in this area are sup-
ported by tools that automatically read the application’s source
code, create a model of the software, and employ specific

techniques that work on that model to assess system properties.
Software metrics are often used as essential components of
these techniques, custom built to measure those properties that
are deemed important by the purpose of the methodology.

ViMC is a tool we developed to support software engineers
in their work by providing an easy-to-use and flexible frame-
work for assessing metrics-based properties of an application,
focused on the feature of enabling the engineers to easily build
a library of metrics fit for their purpose.

The tool uses static analysis, works on Java applications, and
is developed as a plugin for the popular Eclipse IDE, in order
to help the analysis process within a familiar environment.
ViMC reads the source code of the application, creates a model
to represent it internally, and provides flexible ways to create
metrics that can then be easily used on system components to
assess their properties.

The tool comes with an initial library of main metrics, while
the user is enabled to extend this library by either defining
completely new metrics, or combining existing ones. To ensure
flexibility, new metrics can be added to the tool both by writing
small sections of Java code, and by using a dedicated user
interface.

The rest of the paper will present the related work in the
field, then discuss the design-related aspects regarding the tool,
and provide insight into the ways the tool can be used to extend
the metrics library.

II. RELATED WORK

There are various approaches and tools that allow software
engineers to analyze systems by reverse engineering, in order
to achieve software understanding or support system evolution
and maintenance.

Amalfitano et al. [2] introduce a reverse engineering process
focused specifically on Web applications, based on dynamic
analysis that focuses on modeling an application’s presentation
layer. Their process is tailored for the particular kind of
applications they target, and the approach differs from ours
as it is based on dynamic, rather than static analysis.

Ricca and Tonella [3] identify static Web pages in a site
suited for transformation in dynamic pages, by applying a
clustering technique based on a similarity software metric. The
metric is important in the approach, as it provides means of
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understanding which parts of the code can be refactored into a
same component that generates dynamic content. The software
understanding is achieved in this case by focusing on a custom
metric, but the tools they use do not allow adding new metrics
or using new measured properties.

Another analysis process aimed on system understanding
is that employed by Pinzger et al. [4], who extract informa-
tion from distributed applications to find clues about their
architecture. They analyze the code to identify components
and measure their inter-dependency, while building a model
to describe the system.

An interesting approach was developed by Cox et al [5],
who define a ”Dependency Freshness” attribute that assesses
the way a system depends on third-party components. The
attribute is calculated using metrics, which are different from
ours, in that they are based on generic system-wide properties,
such as version numbers, rather than measuring structural
properties within the code. In fact, we believe our tool could
be valuable when creating a methodology that complements
theirs by using the code-related information to better assess
the strength of the dependencies they measure.

We were ourselves involved in developing tools for software
understanding in the past, and we have also previously worked
on related technologies. In an approach for understanding
distributed software systems, we have developed the tool
called niSiDe [6], which is used for reverse engineering and
assessing the properties of complex software. We have also
developed a tool for analyzing Web applications [7], which
uses visualization to help engineers understand the interaction
patterns between system components.

Rather than being built for measuring the quality of software
products like commercial tools such as SonarQube [8], our
tool focuses on helping researchers develop novel analysis
techniques through step-by step experimentation with custom-
built sets of metrics, at the desired level of detail within
the code. The researcher may later decide to include the
discovered techniques in more complex tools or as parts of
higher-level software engineering methodologies.

Tools are built using tools, and we have based the develop-
ment of ViMC on the XCORE framework built by Stefanica
and Mihancea [9], which provides the means for modeling
software systems in a uniform way, regardless of the actual
underlying model. The advantage is that future developments
of our tool will be able to integrate with other analysis tools
we plan to write based on XCORE.

III. MODELING THE ANALYZED APPLICATION

ViMC is written in Java, and uses the XCORE framework
mentioned above. In order to provide support for the software
engineers directly in an environment specific to application
development, we chose to implement our tool as a plugin for
the widely-used Eclipse IDE. This way, users will not have
to switch context when applying the various stages of their
analysis methodology, therefore being able to use the same
familiar environment they normally use.

A. Main entities

The target of the tool is the static analysis of existing Java
applications, starting from their source code. For this purpose,
the first step of any such approach is, necessarily, loading the
source code, and creating a representation of the various code
fragments so that they can be analyzed. In other words, this
usually means that the tool involved has to build a certain
model of the application. The types of entities described by
a model are various in nature, and the concepts they refer
to depend on the aspects the engineer needs to assess. Any
object-oriented system can be represented with a model using
basic concepts such as classes, methods, fields, etc.. However,
if we need to assess specific properties of a system, for
example those that describe their role in a Web application, we
may use additional or different types of entities to represent
the system, such as views, controllers, data objects. Using
the established software engineering terminology, we say we
can choose to define different meta-models for representing
application according to the purpose of our analysis.

One of the advantages of the XCORE framework we use in
ViMC is that the definition of meta-models is done in a way
that allows for easy integration with other similar tools that
use related, but not entirely similar, concepts. The meta-model
can be uniformly described, regardless of the actual backend
the tool uses to extract the information from the analyzed
application. In our case of using Eclipse as environment, the
backend is represented by the specific Abstract Syntax Tree
(AST) of the analyzed application, created at runtime by the
Eclipse JDT framework [10]. We parse this tree, and use the
detailed information provided by it when necessary, but the
higher-level concepts are defined uniformly in our meta-model.

The metamodel we have defined and used for representing
the target system consists of the following basic types of
entities:

• MPackage - models a Java package
• MClass - models a Java class
• MInterface - models a Java interface
• MMethod - models a Java method
For the purposes of our tool, we decided that these enti-

ties were sufficient in order to represent the application, in
a manner that allows for flexibility in defining metrics to
apply on the system. The underlying objects that are used
in the implementation of these entities, are naturally those
belonging to the Eclipse JDT Core Model, such as IType,
IField, IMethod, etc.

B. Metrics

An additional main concept defined by our tool models the
metrics themselves. Because our main purpose is to create a
library of metrics that the user can easily and dynamically
extend, we needed to create a first-class entity that models
this concern. While this entity does not describe the analyzed
system per-se, it definitely counts as the representative of a
main concept in our approach, therefore it can be treated at
the same level as other meta-model entities.
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A key requirement in this respect was to provide a way
for describing metrics that can subsequently be re-used to
define other metrics, for as may times as needed. The natural
way to do it was to create an abstract class that will serve
as the hierarchic base for all the metrics in the system. We
have called this entity MetricInterface, and all metrics, either
belonging to the tool, or created by the user must be extend it.
The class defines a method that must be implemented by all
derived classes, called calculateMetric(), which contains the
actual implementation of the respective measurement.

The signature of the calculateMetric() method is important,
in that it defines the way metrics can interact with system
entities in order to compute their properties. We define two
separate sets of entities that this method applies to:

• the source set,
• the destination set

Both are basically lists of entities (classes, interfaces, etc.)
that are given as arguments to the calculateMetric method,
in order to provide a flexible way of describing the objects
the metric looks at when computing the property. A particular
metric may use both these arguments, or it can only use one
of them, depending on its purpose. Similarly, the length of the
two lists and the meaning of the objects that belong to them
depend entirely on the metric’s semantics, and can vary from
a single one element list, in the case of metrics that apply to
a single entity, to variable length lists, where necessary.

Moreover, although we have used the names ”source”
and ”destination” to designate these lists, this doesn’t imply
any semantic predetermination for the metrics the user can
add. The two names are useful when metrics calculate, for
example, direct dependencies (e.g. method calls, references,
etc.) between a ”source” set of classes and a ”destination”
one, but in a more general case the meaning of the two sets
is up to the engineer.

The calculateMetric() method returns a value of type double,
which represents the value of the property calculated by the
metric on the entities it was applied to. Because all metrics
conform to this rule, they can be easily composed with each
other in arithmetic expressions when necessary.

ViMC defines several pre-defined metrics, which are im-
plemented by using specific property calculators in XCORE-
supported entities (XMetrics), as depicted by Figure 1. Addi-
tional metrics can be created, and metrics can be combined
with each other as discussed in the following sections.

IV. ASSESSING SYSTEM PROPERTIES

As mentioned above, ViMC provides means for applying
various measurements on the analyzed software system, as
well as defining new metrics at user’s discretion. In order to
ease the system assessment, our tool implements the following
features:

• Provides a set of predefined metrics that are readily
available for the user,

• Allows creating new metrics directly from the user inter-
face, by building expressions based on existing metrics,

Fig. 1: Metrics and their relation to XCORE

• Provides complete flexibility by defining a mechanism
that can be used for adding new metrics through pro-
gramming

We discuss each of these features as follows.

A. Predefined metrics

In order to provide the user with as many options as
possible, ViMC defines a comprehensive set of about 30
software metrics that are available from scratch. The selection
of metrics covers various common and widely-used properties
of system entities, and are written in such a way that they can
be re-used to participate in defining more complex metrics.

The predefined metrics are:
• number of public methods
• number of private methods
• number of protected methods
• number of abstract methods
• number of accessor methods
• number of calls to a method in workspace
• number of implementations of interface in package
• number of implementations of interface in project
• number of extending interfaces
• number of interfaces implemented
• number of implementations of class in package
• number of implementations of class in project
• number of references to class in workspace
• number of references to class in project
• number of references to class in package
• base class overriding ratio
• number of constructors
• number of inheriting classes
• number of public attributes
• number of private attributes
• number of protected attributes
• number of public members
• number of private members
• number of protected members
• number of abstract classes in package
• number of classes in package
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Fig. 2: Adding new metrics using the UI

• number of inheritances in package
• number of interfaces in package
• average number of arguments in method
• number of arguments to a method
• number of methods

Depending on their goal, they can be applied at various
levels: to basic system entities such as classes, to groups of
classes such as packages, or can even assess properties at
the system level. Each metric returns, when applied, a value
that represents the specific measurement made on its selected
target. The metrics implementation is uniform as they adhere
to the same conceptual interface, and makes use of the features
provided by XCORE and the underlying model specific to
JDT.

The actual application of both predefined and custom met-
rics to show the calculated measurements is done using the
Insider visual component provided by XCORE.

B. Adding metrics through the user interface

Existing metrics can be joined together to form more elab-
orate metrics. For this purpose, the user interface provides an
interactive window the engineer can use for composing metrics
in expressions (Figure 2). In order to support metrics that can
only be applied to specific entities, the user is presented with
two optional lists of system entities, where instantiations of
the two lists of objects that will be passed as arguments to the
metric can be selected if needed.

For any new metric, the user can select, step by step, any
of the existing metrics as parts of an expression that defines
the new metric (Figure 2). For example, if the user wants to
create a new metric that is based on two existing metrics M1
and M2, and the needed formula is 2*M1+7*M2, the user will
have first to select metric M1, then use a multiplier of 2, select
a ”+” operator, then press ”Update”. The current expression
will show up in the lower window area as ”2*M1+”. At
this point, the user can select the second metric, multiplier
7, and press ”Update” again to see the expression updated to
”2*M1+7*M2”.

C. Adding complex metrics through programming

Not all measurements needed by an engineer can be de-
scribed as simple arithmetic expressions between existing
measurements. More often than not, static analysis techniques
need very particular types of assessments related to the system
entities, that can only be defined in terms of algorithms.
Imagine, for instance, that we need to calculate the number
of methods in a package called from within a class external
to that package. There is no formula to capture this need, and
the only way of achieving this is to instruct the tool what are
the steps involved in the actual calculation: take each method
in the caller class, verify whether it belong to a class in the
target package, increment the value if true, repeat.

Having this fact in mind, we had to find a way to provide
the software engineer with the means of achieving this level of
flexibility when defining metrics, while keeping things simple
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MetricInterface

M1 M2 U1 U2... ...

Predefined Metrics User Metrics

Fig. 3: The MetricInterface

enough to let her focus on the important task of defining
the algorithm itself, rather than being concerned with various
details regarding the minutia of static analysis. We decided
that the best way to do it was to shape the layout of our
reusable metrics framework in such a way that they can be
easily understood and used by a third party to directly write
new metrics. The solution we came up with is based on the
following principles:

• Hide the details regarding the system representation, and
the analysis framework we use, as much as possible. This
is why we decided to hide all details related to XCORE
and to implement our own layer of metrics based on the
MetricInterface entity, as discussed above.

• Design the metric interface in a flexible manner, while
allowing for metrics to combine with each other. For
this purpose, we decided that all metrics should return
a floating point number, and designated two optional
entities lists as the arguments to each and all metrics (the
”source” and ”destination” sets, described in the previous
section).

• Allow as much flexibility as possible for measurements
that need a higher level of detail. This is the reason why
we did not deny the engineer access to the lower-level
artifacts in the system representation, such as the under-
lying JDT objects that directly represent code fragments
as loaded by Eclipse.

The solution is based on defining the MetricInterface ab-
stract class, and allowing users to create their own classes
derived from it (Figure 3). The only method users have to
implement is calculateMetric(), which is the actual body of
the metric itself, and nothing more. All the other details are
handled by the tool. The engineer needs to understand only a
small part of our framework, particularly the MetricInterface,
and the behaviour of the various predefined metrics we pro-
vide. Nevertheless, if the user wants and has the knowledge,
it can delve into lower level details, such as querying JDT-
specific objects.

We can consequently define two types of metrics that can

be implemented by the users through programming:
• Composed metrics, which only use existing metrics and

compose them using simple algorithms;
• Detailed metrics, which can freely use existing metrics,

more complex algorithms, and even lower-level insight
into the system representation.

V. A CASE STUDY: DEFINING METRICS BY PROGRAMMING

This section presents an example of how custom metrics
can be written by the user of our tool, with various degrees
of complexity in defining the actual measurement. We will
discuss both types of approaches mentioned in the previous
section, Composed metrics and Detailed metrics.

A. Example of a composed metric

package metrics.utils;

import java.util.ArrayList;
import metrics.classes.NoOfAccessorMethods;
import metrics.classes.NoOfConstructors;

public class ExposedMethods extends MetricInterface
{

@Override
public double calculateMetric(ArrayList<Object>

source, ArrayList<Object> destination)
{

NoOfConstructors metric1 = new NoOfConstructors();
metric1.calculate(source, destination);
double noOfConstructors = 0;

NoOfAccessorMethods metric2 = new
NoOfAccessorMethods();

metric2.calculate(source, destination);
double noOfAccessorMethods = 0;
try {
noOfConstructors = metric1.getMetricValue();
noOfAccessorMethods = metric2.getMetricValue();

} catch (MetricNotInitialised e) {
System.out.println("Metric Not Initialised");
e.printStackTrace();

}

return (noOfConstructors + noOfAccessorMethods);
}
}

To show how simple metrics can be easily implemented, the
above listing contains the complete code for implementing a
custom metric that calculates the number of methods exposed
by a class. The code only uses one of the two argument
lists received by calculateMetric(), and indeed only the first
element of it, representing the analyzed class. The metric
computes the result by using the output of two predefined
metrics, which calculate the number of constructors and the
number of accessor methods defined in the class, respectively.
The two helper metrics also use only the first element of the
source list argument for getting the class to analyze, which is
documented in our tool’s documentation.

Note: when implementing a new metric, one has to override
the abstract method calculateMetric(), while for applying a
metric, the call should be made to the calculate() method.
This is because the calculate() method is implemented using
the Template Method pattern, and it calls calculateMetric().
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B. Detailed metrics

The code below shows how a more advanced user can
implement a metric that uses JDT-specific underlying objects
for computing a complex metric that needs specific processing
of the analyzed system entities. The metric calculates the
number of classes within several packages (given in the
”destination” list) that extend specific classes enumerated in
the ”source” list provided as the first argument.

The metric parses the lists received as arguments to the
calculateMetric() method, and uses methods specific to the
JDT-provided underlying objects to find specific attributes,
such as their names. The level of detail available this way
allows for maximal flexibility when designing metrics, while
the user does not need to deal with the more involved issues
related to the static analysis and system representation.

package metrics.utils;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jdt.core.IPackageFragment;
import org.eclipse.jdt.core.JavaModelException;

import vimc.metamodel.entity.MClass;
import vimc.metamodel.entity.MPackage;
import vimc.metamodel.factory.Factory;

public class NoOfDerivedClasses extends
MetricInterface {

@Override
public double calculateMetric(ArrayList<Object>

source, ArrayList<Object> destination) {
// source: list with classes for which we search

for sub classes
// destination: list of packages in which we

search the subclasses
MClass mClass = null;
MPackage mPackage = null;
int noOfClassExtensions = 0;

for (int i = 0; i < source.size(); i++) {
mClass = (MClass) source.get(i);
// current class name
String superClassName =

mClass.getUnderlyingObject()
.getElementName();

for (int j = 0; j < destination.size(); j++) {
// for all packages in the destination list
mPackage = (MPackage) destination.get(j);
List<MClass> mClassesInPackage =

mPackage.classesGroup().getElements();
// for all classes in the package
for (MClass eachMClass : mClassesInPackage) {

String nameOfClass;
try {
nameOfClass =

eachMClass.getUnderlyingObject()
.getSuperclassName();

// count the number of classes which have
as super class the class given as

// argument
if (nameOfClass != null) {
if
(nameOfClass.equals(superClassName))
{

noOfClassExtensions++;
}

}
} catch (JavaModelException e) {

e.printStackTrace();
}

}
}

}

return noOfClassExtensions;
}
}

VI. CONCLUSIONS

This paper presented ViMC, our approach for building a tool
that enables software engineers to analyze object-oriented Java
applications by building a library of metrics that assess system
properties. The metrics can either be added using a specific
user interface, or can be described by implementing minimal
amounts of Java code that reuse existing metrics and allows
for different levels of access to the modeled system’s entities.

Future development of this tool aims at further refining
the user interface for interactively adding metrics, providing
a larger set of predefined metrics, as well as tailoring the
tool to specific software engineering analysis scenarios, such
as assessing dependencies between different applications, or
finding structural traits related to code reuse.
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